Abstract

The goal of Emergency Medical Service (EMS) systems is to provide rapid response to emergency calls in order to save lives. This paper proposes a relocation strategy to improve the performance of EMS systems. In practice, EMS systems often use a compliance table to relocate ambulances. A compliance table specifies ambulance base stations as a function of the state of the system. We consider a nested-compliance table, which restricts the number of relocations that can occur simultaneously. We formulate the nested-compliance table model as an integer programming model in order to maximize expected coverage. We determine an optimal nested-compliance table policy using steady state probabilities of a Markov chain model with relocation as input parameters. These parameter approximations are independent of the exact compliance table used. We assume that there is a single type of medical unit, single call priority, and no patient queue. We validate the model by applying the nested-compliance table policies in a simulated system using real-world data. The numerical results show the benefit of our model over a static policy based on the adjusted maximum expected covering location problem (AMEXCLP).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call