Abstract

Good understanding of micro-scale urban-wind phenomena is needed for optimizing power generation capabilities of building-integrated wind turbines and for safety of futuristic urban transport involving drones. The current work involves development of a multiscale methodology for obtaining wind fields in an urban landscape. The multi-scale methodology involves coupling three models operating on different scales namely an operational meso-scale numerical weather prediction model HARMONIE, a micro-scale model that captures terrain- induced wind influence and a super-micro scale Computational Fluid Dynamics model using large eddy simulation and RANS model to capture the building-induced wind flow. Here, we present a comparison of the wind velocity predicted by two different turbulence models (LES and RANS) that are operating at the finest scale with the measured experiment data for a realistic case of flow in vicinity of the Oslo university hospital. The reasons behind the observed better prediction of LES model are outlined, and use of such models is advocated to improve accuracy.LES, multi-scale, wind, urban climate, drones, wind energy

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call