Abstract

We present an acceleration of the well-established Krylov–Ritz methods to compute the sign function of large complex matrices, as needed in lattice QCD simulations involving the overlap Dirac operator at both zero and nonzero baryon density. Krylov–Ritz methods approximate the sign function using a projection on a Krylov subspace. To achieve a high accuracy this subspace must be taken quite large, which makes the method too costly. The new idea is to make a further projection on an even smaller, nested Krylov subspace. If additionally an intermediate preconditioning step is applied, this projection can be performed without affecting the accuracy of the approximation, and a substantial gain in efficiency is achieved for both Hermitian and non-Hermitian matrices. The numerical efficiency of the method is demonstrated on lattice configurations of sizes ranging from 4 4 to 10 4, and the new results are compared with those obtained with rational approximation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.