Abstract

We develop a nested hybridizable discontinuous Galerkin (HDG) method to numerically solve the Maxwell's equations coupled with a hydrodynamic model for the conduction-band electrons in metals. The HDG method leverages static condensation to eliminate the degrees of freedom of the approximate solution defined in the elements, yielding a linear system in terms of the degrees of freedom of the approximate trace defined on the element boundaries. This article presents a computational method that relies on a degree-of-freedom reordering such that the HDG linear system accommodates an additional static condensation step to eliminate a large portion of the degrees of freedom of the approximate trace, thereby yielding a much smaller linear system. For the particular metallic structures considered in this article, the resulting linear system obtained by means of nested static condensations is a block tridiagonal system, which can be solved efficiently. We apply the nested HDG method to compute second harmonic generation on a triangular coaxial periodic nanogap structure. This nonlinear optics phenomenon features rapid field variations and extreme boundary-layer structures that span a wide range of length scales. Numerical results show that the ability to identify structures which exhibit resonances at ω and 2ω is essential to excite the second harmonic response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.