Abstract
A mammalian “RGC model” (retinal ganglion cells) is distinguished from the Hodgkin–Huxley model by the virtual absence of K-current during, and the virtual absence of Na-current after, the regenerative (rising) phase of the action potential. Both Na- and K-currents remain negligible throughout the interspike interval, whose control is therefore relinquished to stimulus currents. These properties yield a highly flexible and energy-efficient nerve impulse encoder. For the Hodgkin–Huxley model, in contrast, only 15% of the Na-ions enter the axon regeneratively during the action potential (squid giant axon); a wasteful 85% enter during the falling phase. Further, early activation of K-current causes the Na- and K-currents of the action potential to dominate over stimulus currents in controlling the sub-threshold membrane potential (interspike interval). This property makes the Hodgkin–Huxley model an intractable high frequency oscillator, which cannot be converted to flexible impulse encoding. The temperature difference between the squid giant axon (6.3 °C) and RGCs (37 °C) is bridged by a Q10 analysis, which suggests that an additional molecular gating mechanism of high Q10 – which is not present in the squid – is active in RGCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Brain Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.