Abstract

Simulation and quantitative analysis of urban land use change are effective ways to investigate urban form evolution. Cellular Automata (CA) has been used as a convenient and useful tool for simulating urban land use change. However, the key issue for CA models is the definition of the transition rules, and a number of statistical or artificial intelligence methods may be used to obtain the optimal rules. Neighborhood configuration is a basic component of transition rules, and is characterized by a distance decay effect. However, many CA models do not consider the neighbor decay effect in cellular space. This paper presents a neighbor decay cellular automata model based on particle swarm optimization (PSO-NDCA). We used particle swarm optimization (PSO) to find transition rules and considered the decay effect of the cellular neighborhood. A negative power exponential function was used to compute the decay coefficient of the cellular neighborhood in the model. By calculating the cumulative differences between simulation results and the sample data, the PSO automatically searched for the optimal combination of parameters of the transition rules. Using Xiamen City as a case study, we simulated urban land use changes for the periods 1992–1997 and 2002–2007. Results showed that the PSO-NDCA model had a higher prediction accuracy for built-up land, and a higher overall accuracy and Kappa coefficient than the urban CA model based on particle swarm optimization. The study demonstrates that there exist optimal neighborhood decay coefficients in accordance with the regional characteristics of an area. Urban CA modelling should take into account the role of neighborhood decay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.