Abstract

The endogenous nuclear plasmid Ddp1 from the wild-type Dictyostelium discoideum strain NC4 has been cloned, its origin of replication has been localized, and plasmid-encoded genes have been mapped that are preferentially expressed during growth or development. Here we present an analysis of the regulation of the Ddp1-encoded gene d5, which, in wild-type cells, is expressed only during the multicellular stages of development. In this study, we show that sequences 3' to the d5 coding region are required to suppress constitutive expression of d5 from aberrant transcriptional start sites and that this regulatory region acts at a distance and in an orientation-independent manner. The cis-acting negative regulatory element(s) necessary for repression of aberrant d5 expression is either very tightly linked or identical to sequences required for extrachromosomal replication, such that all 3' deletions that cause constitutive d5 expression result in the integration of the plasmid into the D. discoideum genome. Placing d5 (without the 3' regions containing the Ddp1 origin) on an extrachromosomal vector based on another endogenous plasmid (Ddp2) did not restore proper transcriptional regulation, suggesting that an extrachromosomal environment alone is not sufficient to confer proper transcriptional regulation to d5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call