Abstract

Magnetically coupled impedance source networks (MCIS) are capable of producing higher voltage gains at the expense of high switching voltage spikes due to the presence of leakage inductance. These voltage spikes decorate the converter efficiency and life expectancy of switches. Therefore, to reduce the voltage spikes, a negative embedded differential mode gamma source inverter (NEDM ${{\Gamma }}$ ZSI) is presented in this brief. The proposed inverter can achieve higher voltage gains with reduced switching voltage spikes and low capacitor voltage stresses compared to other MCIS networks. Also, the proposed inverter draws continuous input current from the dc mains, having a common ground, and uses the minimum number of component in a circuit. The operating principle of the proposed NEDM ${{\Gamma }}$ ZSI is analyzed in electrical and magnetic domains. The ability of the proposed impedance network, in terms of voltage spike suppression has been verified experimentally using DC-DC converter configuration. Finally, the performance of a NEDM ${{\Gamma }}$ ZSI is validated with simulation and experimental verification using a single-phase inverter configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.