Abstract
This paper proposes a necessary condition for power flow insolvability in power distribution systems with distributed generators (DGs). We show that the proposed necessary condition indicates the impending singularity of the Jacobian matrix and the onset of voltage instability. We consider different operation modes of DG inverters, e.g., constant-power and constant-current operations, in the proposed method. A new index based on the presented necessary condition is developed to indicate the distance between the current operating point and the power flow solvability boundary. Compared to existing methods, the operating condition-dependent critical loading factor provided by the proposed condition is less conservative and is closer to the actual power flow solution space boundary. The proposed method only requires the present snapshots of voltage phasors to monitor the power flow insolvability and voltage stability. Hence, it is computationally efficient and suitable to be applied to a power distribution system with volatile DG outputs. The accuracy of the proposed necessary condition and the index is validated by simulations on a distribution test system with different DG penetration levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.