Abstract

In this paper, we prove a necessary and sufficient condition for the construction of 2-to-1 optical buffered first-in-first-out (FIFO) multiplexers by a single crossbar switch and fiber delay lines. We consider a feedback system consisting of an (M+2)times(M+2) crossbar switch and M fiber delay lines with delays d1,d2,...,dM. These M fiber delay lines are connected from M outputs of the crossbar switch back to M inputs of the switch, leaving two inputs (respectively, two outputs) of the switch for the two inputs (respectively, two outputs) of the 2-to-1 multiplexer. The main contribution of this paper is the formal proof that d1=1 and di les di+1 les 2d i, i=1,2,...,M-1, is a necessary and sufficient condition on the delays d1,d2,...,dM for such a feedback system to be operated as a 2-to-1 FIFO multiplexer with buffer Sigmai=1 Mdi under a simple packet routing policy. Specifically, the routing of a packet is according to a specific decomposition of the packet delay, called the C- transform in this paper. Our result shows that under such a feedback architecture a 2-to-1 FIFO multiplexer can be constructed with M=O(log B), where B is the buffer size. Therefore, our construction improves on a more complicated construction recently proposed by Sarwate and Anantharam that requires M=O(radicB) under the same feedback architecture (we note that their design is more general and works for priority queues)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.