Abstract

With respect to a given boundary value problem, the corresponding conventional boundary integral equation is shown to yield non-equivalent solutions, which are dependent upon Poisson's ratio and geometry. In the paper a systematic method for establishing a necessary and sufficient boundary integral formulation has been proposed for two-dimensional elastostatic problems. Numerical analyses show that the conventional boundary integral equation yields incorrect results when the scale in the fundamental solution approaches a degenerate scale value. However, the results of the necessary and sufficient boundary integral equation are in good agreement with analytical solutions of the boundary value problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.