Abstract
We present a new algorithm for polynomial time learning of optimal behavior in single-controller stochastic games. This algorithm incorporates and integrates important recent results of Kearns and Singh (Proc. ICML-98, 1998) in reinforcement learning and of Monderer and Tennenholtz (J. Artif. Intell. Res. 7, 1997, p. 231) in repeated games. In stochastic games, the agent must cope with the existence of an adversary whose actions can be arbitrary. In particular, this adversary can withhold information about the game matrix by refraining from (or rarely) performing certain actions. This forces upon us an exploration versus exploitation dilemma more complex than in Markov decision processes in which, given information about particular parts of a game matrix, the agent must decide how much effort to invest in learning the unknown parts of the matrix. We present a polynomial time algorithm that addresses these issues in the context of the class of single controller stochastic games, providing the agent with near-optimal return.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.