Abstract

We present a constant-round algorithm in the massively parallel computation (MPC) model for evaluating a natural join where every input relation has two attributes. Our algorithm achieves a load of $\tilde{O}(m/p^{1/\rho})$ where $m$ is the total size of the input relations, $p$ is the number of machines, $\rho$ is the join's fractional edge covering number, and $\tilde{O}(.)$ hides a polylogarithmic factor. The load matches a known lower bound up to a polylogarithmic factor. At the core of the proposed algorithm is a new theorem (which we name the "isolated cartesian product theorem") that provides fresh insight into the problem's mathematical structure. Our result implies that the subgraph enumeration problem, where the goal is to report all the occurrences of a constant-sized subgraph pattern, can be settled optimally (up to a polylogarithmic factor) in the MPC model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.