Abstract

Classical ionized impurity scattering is employed to calculate the conductivity at and in the vicinity of the critical point. The result sigma(iis)(x = x(c),T) = Asqrt[T], closely given by e(2)/Planck's over 2pilambda(dB) with the de Broglie wavelength lambda(dB) = h/(2m(*)kT)(1/2) in the nondegenerate regime epsilon(F)<<kT, is weakly dependent on the form of the density of states above the mobility edge. This result can explain the sqrt[T] term observed for amorphous semiconductor alloys. sigma(iis)(x>x(c), T) might also explain the linear scaling behavior sigma(x, T)-Asqrt[T] = sigma(0)(x/x(0)-1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.