Abstract

The condition of strong mixing for triangular arrays of random variables is a common condition of weak dependence. In this note, it is shown that this condition is not as general as one might believe. In particular, it is shown that there exist triangular arrays of first-order autoregressive random variables which converge almost surely to an independent identically distributed sequence of random variables and for which the central limit theorem holds, but which are not strong mixing triangular arrays. Hence, the strong mixing condition is more restrictive than desired.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.