Abstract

Fault diagnosis of wind turbine gearboxes is crucial in ensuring wind farms’ reliability and safety. However, nonstationary working conditions, such as load change or speed regulation, may result in an accuracy deterioration of many existing fault diagnosis approaches. To overcome the issue, this research proposes a nearly end-to-end deep learning approach to fault diagnosis of wind turbine gearboxes using vibration signals. Concretely, we adopt Empirical Mode Decomposition (EMD) to decompose vibration signals into a series of Intrinsic Mode Functions (IMFs). Then, the multi-channel IMFs are fed into a 1D Convolutional Neural Network (CNN) for automatic feature learning and fault classification. Since EMD is a signal processing technique requiring no prior knowledge, the model architecture can be viewed as nearly end-to-end. The proposed approach was validated in a real-world dataset; it proved deep learning models have an overwhelming advantage in representation capacity over traditional shallow models. It also demonstrated that the introduction of EMD as a preprocessing step improves both the training efficiency and the generalization ability of a deep model, thus leading to a better fault diagnosis efficacy under variable working conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.