Abstract

Composite elastomers with elasticity, conductivity, and self-healing properties have gained tremendous interest due to the imperative demands in the fields of stretchable electronics and soft robotics. However, the self-healing performance and the amount of filler are contradictory. Herein, a new conductive self-healing composite elastomer is developed by uniformly dispersing EGaIn droplets and Prussian blue nanoparticles (PBNPs) in a bran-new elastomer which cross-linked the linear polymer that obtained by ring-opening polymerization of trimethylene carbonate and 5-methyl-5-carboxytrimethylene carbonate initiated by polyethylene glycol by aluminum chloride. As confirmed by FT-IR and XPS, the cross-linking network of the composite elastomer is composed of hydrogen bonds and coordination bonds sheared between aluminum and carboxyl groups, and the coordination process was revealed by DFT calculations. This elastomer exhibits excellent light-to-heat conversion properties, thermal conductivity (1.207 W/mK), electrical conductivity (202.34 S·m−1), and good tensile properties that meet application requirements. The good photothermal performance enables the elastomer to self-heal rapidly under NIR irradiation (90.3 %), and accelerate the shape recovery of the elastomer. As a sensor, the elastomer demonstrates good sensitivity, capable of monitoring human movements and recognizing handwriting. This self-healable conductive elastomer has significant potential in the fields of damage-resistant flexible sensors and human-machine interface applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.