Abstract
Recovery of critical metals from marine minerals is a promising option to ensure the sustainable supply of critical metals, but existing recovery processes suffer from technical bottlenecks in terms of low resource utilization and large waste discharge. This paper presents a complete hydrometallurgical route for the full-component utilization of deep-sea polymetallic nodules (DPN). Leaching experiments were first carried out in the presence of SO2 because cheap SO2 can destroy the original mineral structure based on a reductive mechanism. The leaching efficiencies of Ni, Co, Mn, Cu, La, Ce, and Fe were reached 99.2%, 99.3%, 98.7%, 95.9%, 95.3%, 95.4%, and 91.4%, respectively, under the optimal conditions of 30 °C, L/S ratio of 6:1 mL/g, H2SO4 dosage of 37.5 wt%. The downstream process aimed at the sequential recycling of metal ions from the pregnant leach solution (PLS) consists of Fe recovery by the hematite process, selective solvent extraction of Cu and rare earth elements (REEs), co-extraction of Ni/Co/Mn, and Mn electrowinning. As a result, high-grade hematite (60 wt% of Fe), industrial-grade CuSO4, mixed rare earth oxides, battery-grade (Ni, Co, Mn)SO4 solution, and electrolytic manganese were obtained. During the whole process, the recovery efficiency of Ni, Co, Mn, Cu, La, Ce, and Fe reached 97.1%, 97.1%, 96.9%, 91.5%, 91.1%, 91.1%, and 91.3%, respectively. Since the hydrometallurgical process achieves the resource utilization of all the DPN constituents, it has the advantages of near-zero waste and low energy consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.