Abstract

A numerical and phenomenological model of global ionospheric electron density (Ne) is investigated. The three‐dimensional Ne model has been named the Taiwan Ionospheric Model (TWIM) and constructed from monthly weighted and hourly vertical Ne profiles retrieved from FormoSat3/COSMIC GPS radio occultation measurements. The TWIM exhibits vertically fitted Chapman layers, with distinct F2, F1, E, and D layers, and surface spherical harmonics approaches for the fitted Chapman layer parameters including peak density, peak density height, and scale height. These results are useful in investigation of near‐Earth space and large‐scale Ne distribution with diurnal and seasonal variations, along with geographic features such as the equatorial anomaly (EA). This paper also investigates the diurnal and seasonal variations of EA within different ionospheric layers and specifically attempts to account for the latitudinal and longitudinal structures caused by atmospheric tides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.