Abstract
We consider a Hamilton-Jacobi equation where the Hamiltonian is periodic in space and coercive and convex in momentum. Combining the representation formula from optimal control theory and a theorem of Alexander, originally proved in the context of first-passage percolation, we find a rate of homogenization which is within a log-factor of optimal and holds in all dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.