Abstract

We demonstrate near linear scaling of a new algorithm for computing smooth local coupled-cluster singles-doubles (LCCSD) correlation energies of quantum mechanical systems. The theory behind our approach has been described previously, [J. Subotnik and M. Head-Gordon, J. Chem. Phys. 123, 064108 (2005)], and requires appropriately multiplying standard iterative amplitude equations by a bump function, creating local amplitude equations (which are smooth according to the implicit function theorem). Here, we provide an example that this theory works in practice: we show that our algorithm leads to smooth potential energy surfaces and yields large computational savings. As an example, we apply our LCCSD approach to measure the post-MP2 correction to the energetic gap between two different alanine tetrapeptide conformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.