Abstract

Cell sheet engineering represents a new era of precise and efficient regenerative medicine, but its efficacy is limited by the elaborative preparation and the weak mechanics. Herein, a near-infrared (NIR)-triggered dynamic wrinkling biointerface was designed for rapid acquisition of practical cell sheets. The biocompatible NIR can initiate the photothermal-mechanical linkage cascade to efficiently dissolve the collagen supporting layer and release the high-quality cell sheets. The interfacial shear force generates with the dynamic wrinkling, playing an active role in accelerating the cell sheet release. High-quality and self-supporting cell sheets can be harvested within a few minutes, demonstrating a new paradigm of photothermal-mechanical manipulation. The transplantable cell sheets with outstanding physiological and mechanical performances were proven to promote wound healing in skin regeneration. This method may open a completely new front in thermal and mechanical responsive cascade to harvest cell sheets, facilitating their wide applications in regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.