Abstract

Fluorescence anisotropy (FA) has been widely applied for detecting and monitoring special targets in life sciences. However, matrix autofluorescence restricted its further application in complex biological samples. Herein, we report a near-infrared-II (NIR-II) FA strategy for detecting adenosine triphosphate (ATP) in human serum samples and breast cancer cell lysate, which employed NIR-II fluorescent Ag2Se quantum dots (QDs) as tags to reduce matrix autofluorescence effect and applied graphene oxide (GO) to enhance fluorescence anisotropy signals. In the presence of ATP, the recognition between NIR-II Ag2Se QDs labeled aptamer (QD-pDNA) and ATP led to the release of QD-pDNA from GO, resulting in the obvious decrease of FA values. ATP could be quantitatively detected in concentrations ranged from 3 nM to 2500 nM, with a detection limit down to 1.01 nM. This study showed that the developed NIR-II FA strategy could be applied for detecting targets in complex biological samples and had great potential for monitoring interactions between biomolecules in biomedical research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call