Abstract
As a regular neurodegenerative disease, Parkinson's disease (PD) brings great pain and heavy economic burden to patients. Peroxynitrite (ONOO-) have attracted great attention to be a neurotoxicity specie in the pathogenesis of PD. Therefore, understanding the physiological functions of ONOO- in PD disease is of great importance to the early diagnoses. Unfortunately, it still lacks effective method for detecting ONOO- in PD model. In this work, a highly sensitivity and selectivity near-infrared ratiometric fluorescent probe (named K-ONOO) was designed for tracking ONOO- in PD model. K-ONOO exhibited a unique ratiometric response toward ONOO- due to the fracture of the boronic acid ester group and the principle of ICT resulted in red-shifted spectra. K-ONOO exhibited a quantitative response to ONOO- (0–15 μM) with a low detection limit (212 nM). K-ONOO can successfully map the changes of endogenous ONOO- in vivo. The results demonstrated that an elevated degree of ONOO- is closely correlated with zebrafish under rotenone stimulation. More importantly, H2S may serve as a neuroprotectant, which helps regulate ONOO- overexpression and prevent oxidative stress-induced neurodegeneration. The visualization imaging of ONOO- based on K-ONOO provides an auspicious method for understanding the essential role of ONOO- during PD disease pathology and early diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.