Abstract

Viscosity is closely associated with physiological and pathological processes, as well as food quality. Herein, a novel fluorescent molecular rotor, BMCY-V, was presented and applied for detection of viscosity. BMCY-V contained a benzoindole unit as electron donor and a malononitrile group as acceptor. In low-viscous solvents, the rotor can freely rotate, leading to dissipation of excited-state energy. In high-viscous media, however, the free rotation of the rotor is severely restricted, thus reducing non-radiative transition and resulting in significantly enhanced fluorescence intensity. BMCY-V is extremely sensitive to viscosity, showing about 3968 times increase of fluorescence intensity at 728 nm from water to 95 % glycerol. Due to the excellent photophysical property such as near-infrared emission, BMCY-V was successfully used to visualize viscosity in live cells and in liver tissues. In addition, BMCY-V can also evaluate the thickening effect of various thickeners and visualize the changes of viscosity during deterioration of fluid drinks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.