Abstract

A near-ideal solar absorber, which is composed of a metal nanowire array and a planar multilayer system, is proposed and investigated. Both numerical and analytical results show that the proposed nanostructure can achieve over 90% optical absorption throughout the wavelength range of 300–1909 nm due to the coupled effect of multiple resonance modes, and can maintain a good absorption stability over a wide incident angle regardless of the polarization states. Meanwhile, for practical applications, the total photothermal conversion efficiency can reach 95.57% at operating temperature of 373.15 K, which is particularly useful in solar energy harvesting. The absorption performance is also strongly dependent on the diameter and height of nanowire as well as the thicknesses of dielectric layers, enabling the further improvement of both the operating bandwidth and absorption efficiency. Moreover, by adjusting the period of the multilayer or nanowire materials, the selective absorption properties of this nanostructure can be flexibly controlled to satisfy more spectral requirements. These features make the presented designs hold promise for a series of solar-dependent optical applications, such as photothermal energy generation and thermal emitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.