Abstract
Noise reduction performance of a compact active sound radiation control system is significantly affected by locations of the error microphones which are required to be installed near the primary source. In this paper, near-field error sensing for multi-channel active radiation control systems in free field is investigated, and it is found that the optimal locations of error sensors for minimizing the sum of squared sound pressure are between the primary source and the secondary sources distributed uniformly on a sphere surface surrounding the primary source. Both simulation and experiment results show that the optimal locations of error microphones are independent of the type of primary source when there are sufficient secondary sources. These optimal locations remain unchanged at low frequencies and move toward secondary sources when the secondary source number increases. Therefore, for active radiation control applications in low frequency range, a compact multi-channel system can be developed by locating error microphones between the primary source and secondary sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.