Abstract

The general framework and experimental validation of a novel navigation system designed for shoulder arthroscopy are presented. The system was designed to improve the surgeon's perception of the three-dimensional space within the human shoulder. Prior to surgery, a surface model of the shoulder was created from computed tomography images. Intraoperatively, optically tracked arthroscopic instruments were calibrated. The surface model was then registered to the patient using tracked freehand ultrasound images taken from predefined landmark regions on the scapula. Three-dimensional models of the surgical instruments were displayed, in real time, relative to the surface model in a user interface. Laboratory experiments revealed only small registration and calibration errors, with minimal time needed to complete the intraoperative tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call