Abstract

Rats possess exceptional navigational abilities, allowing them to adaptively adjust their navigation paths based on the environmental structure. This remarkable ability is attributed to the interactions and regulatory mechanisms among various spatial cells within the rat's brain. Based on these, this paper proposes a navigation path search and optimization method for mobile robots based on the rat brain's cognitive mechanism. The aim is to enhance the navigation efficiency of mobile robots. The mechanism of this method is based on developing a navigation habit. Firstly, the robot explores the environment to search for the navigation goal. Then, with the assistance of boundary vector cells, the greedy strategy is used to guide the robot in generating a locally optimal path. Once the navigation path is generated, a dynamic self-organizing model based on the hippocampal CA1 place cells is constructed to further optimize the navigation path. To validate the effectiveness of the method, this paper designs several 2D simulation experiments and 3D robot simulation experiments, and compares the proposed method with various algorithms. The experimental results demonstrate that the proposed method not only surpasses other algorithms in terms of path planning efficiency but also yields the shortest navigation path. Moreover, the method exhibits good adaptability to dynamic navigation tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.