Abstract
Numerical stall flutter prediction methods are much needed, as modern jet engines require blade designs close to the stability boundaries of the performance map. A Quasi-3D Navier–Stokes code is used to analyze the flow over the oscillating cascade designed and manufactured by Pratt & Whitney, and studied at the NASA Glenn Research Center by Buffum et al. The numerical method solves for the governing equations with a fully implicit time-marching technique in a single passage by making use of a direct-store, periodic boundary condition. For turbulence modeling, the Baldwin–Lomax model is used. To account for transition, the criterion to predict the onset location suggested by Baldwin and Lomax is incorporated. Buffum et al. investigated two incidence cases for three different Mach numbers. The low-incidence case at a Mach number of 0.5 exhibited the formation of small separation bubbles at reduced oscillation frequencies of 0.8 and 1.2. For this case the present approach yielded good agreement with the steady and oscillatory measurements. At high incidence at the same Mach number of 0.5 the measured steady-state pressure distribution and the separation bubble on the upper surface was also found in good agreement with the experiment. But computations for oscillations at high incidence failed to predict the negative damping contribution caused by the leading edge separation. [S0889-504X(00)01304-0]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.