Abstract
In last few years many approaches have been proposed to detect communities in social networks using diverse ways. Community detection is one of the important researches in social networks and graph analysis. This paper presents a cuckoo search optimization algorithm with Lévy flight for community detection in social networks. Experimental on well-known benchmark data sets demonstrates that the proposed algorithm can define the structure and detect communities of complex networks with high accuracy and quality. In addition, the proposed algorithm is compared with some swarms algorithms including discrete bat algorithm, artificial fish swarm, discrete Krill Herd, ant lion algorithm and lion optimization algorithm and the results show that the proposed algorithm is competitive with these algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Service Science, Management, Engineering, and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.