Abstract

Woodworking industry is increasingly characterized by processing complex spatial forms with high accuracy and high speeds. The use of parallel robot platforms with six degrees of freedom gains more significance. Due to stricter requirements regarding energy consumption, easy maintenance and environmental safety, parallel platforms with pneumatic drives become more and more interesting. However, the high precision tracking control of such systems represents a serious challenge for designers. The reason is found in complex dynamics of the mechanical system and strong nonlinearity of the pneumatic system. This paper presents an optimal control design for a pneumatically driven parallel robot platform. The Proportional-Integral-Derivative (PID) algorithm with feedback linearization is used for control. The parameter search method is based on a firefly algorithm due to the empirical evidence of its superiority in solving various nonconvex problems. The simulation results show that the proposed optimal tuned cascade control is effective and efficient. These results clearly demonstrate that the proposed control techniques exhibit significant performance improvement over classical and widely used control techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.