Abstract

The ever-growing Industrial Internet of Things (IoT) provides a powerful method to sense a series of critical industrial environments. This paper studies how to deploy the fixed number of IoT nodes so that the network lifetime is maximized in a sensing field with obstacles while guaranteeing the requirements of confident information coverage, network connectivity, energy efficiency, fault tolerance, and reliability. An IoT node deployment scheme based on an improved nature-inspired genetic algorithm is proposed to solve the defined constrained optimization problem. In the proposed IoT node deployment scheme, we utilize a population initialization based on the Delaunay triangulation to generate the better initial population, a chromosome modification operation to achieve both connectivity and coverage for each chromosome and a chromosome mirror-crossover operation to produce the better offsprings. Experimental results show that our deployment schema equips better performance in terms of longer network lifetime and comparable coverage ratio compared with the other four peer algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.