Abstract

Certain peptide folds, owing to a combination of intrinsic stability and resilience to amino acid substitutions, are particularly effective for the display of diverse functional groups. Such "privileged scaffolds" are valuable as starting points for the engineering of new bioactive molecules. We have identified a precursor peptide expressed in the venom gland of the marine snail Conus victoriae, which appears to belong to a hitherto undescribed class ofmolluscan neuropeptides. Mass spectrometry matching with the venom confirmed the complete mature peptide sequence as a 31-residue peptide with a single disulfide bond. Solution structure determination revealed a unique peptide fold that we have designated the single disulfide-directed β hairpin (SDH). The SDH fold is highly resistant to thermal denaturation and forms the core of several other multiple disulfide-containing peptide folds, including the inhibitor cystine knot. This elementary fold may offer a valuable starting point for the design and engineering of new bioactive peptides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.