Abstract

The calcium-activated phosphatase calcineurin (Cn) transduces physiological signals through intracellular pathways to influence the expression of specific genes. Here, we characterize a naturally occurring splicing variant of the CnAβ catalytic subunit (CnAβ1) in which the autoinhibitory domain that controls enzyme activation is replaced with a unique C-terminal region. The CnAβ1 enzyme is constitutively active and dephosphorylates its NFAT target in a cyclosporine-resistant manner. CnAβ1 is highly expressed in proliferating myoblasts and regenerating skeletal muscle fibers. In myoblasts, CnAβ1 knockdown activates FoxO-regulated genes, reduces proliferation, and induces myoblast differentiation. Conversely, CnAβ1 overexpression inhibits FoxO and prevents myotube atrophy. Supplemental CnAβ1 transgene expression in skeletal muscle leads to enhanced regeneration, reduced scar formation, and accelerated resolution of inflammation. This unique mode of action distinguishes the CnAβ1 isoform as a candidate for interventional strategies in muscle wasting treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.