Abstract

Manipulation of biomacromolecules is ideally achieved through unique and bioorthogonal chemical reactions of genetically encoded, naturally occurring functional groups. The toolkit of methods for site-specific conjugation is limited by selectivity concerns and a dearth of naturally occurring functional groups with orthogonal reactivity. We report that pyroglutamate amide N-H bonds exhibit bioorthogonal copper-catalyzed Chan-Lam coupling at pyroglutamate-histidine dipeptide sequences. The pyroglutamate residue is readily incorporated into proteins of interest by natural enzymatic pathways, allowing specific bioconjugation at a minimalist dipeptide tag.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call