Abstract

GRA117 is crucial in the process of carbon assimilation in rice as it regulates the development of chloroplasts, which in turn facilitates the Calvin-Benson cycle. Carbon assimilation is a critical process for plant growth, and despite numerous relevant studies, there are still unknown constraints. In this study, we isolated a rice mutant, gra117, which exhibited seedling albinism, delayed chloroplast development, decreased chlorophyll content, reduced yield, and seedling stress susceptibility, as compared to WT. Our further investigations revealed that gra117 had a significantly lower net photosynthetic carbon assimilation rate, as well as reduced levels of Rubisco enzyme activity, RUBP, PGA, carbohydrate, protein content, and dry matter accumulation. These findings provide evidence for decreased carbon assimilation in gra117. By mapping cloning, we discovered a 665bp insertion in the GRA117 promoter region that decreases GRA117 transcriptional activity and causes the gra117 phenotype. GRA117 encodes PfkB-type fructokinase-like 2, which is subcellularly localized in chloroplasts and is widely expressed in various rice tissues, particularly at high levels in leaf tissues. GRA117 transcription is regulated by the core region 1029bp before the start codon. Our quantitative RT-PCR and Western blot assays showed that GRA117 promotes the expression and translation of photosynthetic genes. RNA-Seq analysis revealed that GRA117 plays a significant role in photosynthetic carbon fixation, carbon metabolism, and chloroplast ribosome-related pathways. Our study supports that GRA117 promotes the Calvin-Benson cycle by regulating chloroplast development, ultimately leading to enhanced carbon assimilation in rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call