Abstract
Relational database management systems (RDBMSs) are powerful because they are able to optimize and execute queries against relational databases. However, when it comes to NLIDB (natural language interface for databases), the entire system is often custom-made for a particular database. Overcoming the complexity and expressiveness of natural languages so that a single NLI can support a variety of databases is an unsolved problem. In this work, we show that it is possible to separate data specific components from latent semantic structures in expressing relational queries in a natural language. With the separation, transferring an NLI from one database to another becomes possible. We develop a neural network classifier to detect data specific components and an adversarial mechanism to locate them in a natural language question. We then introduce a general purpose transfer-learnable NLI that focuses on the latent semantic structure. We devise a deep sequence model that translates the latent semantic structure to an SQL query. Experiments show that our approach outperforms previous NLI methods on the WikiSQL [49] dataset, and the model we learned can be applied to other benchmark datasets without retraining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.