Abstract

Dissolution of natural hydrate cores was measured using time-lapse photography on the seafloor at Barkley Canyon (850 m depth and 4.17 °C). Two types of hydrate fabrics in close contact with one another were studied: a “yellow” hydrate stained with condensate oil and a “white” hydrate. From thermogenic origins, both fabrics contained methane as well as heavier hydrocarbons. These multi-component hydrates were calculated to be well within p– T stability conditions (<200 m water depth needed at 4.17 °C). While stable in pressure and temperature, the hydrates were bathed in under-saturated seawater, which promoted dissolution. The flux of gas from the shrinking yellow hydrate core was 0.15 ± 0.01 mmol gas/m 2 s, while the white hydrate dissolved faster at 0.25 ± 0.02 mmol gas/m 2 s. To determine the controlling mechanism for the observed changes in the hydrate cores, experimental results were compared with an engineering correlation for convective mass transfer. Using water velocity as a fitting parameter, the correlation agreed well with results from a previous dissolution experiment on well-characterized synthetic hydrates. Even with a number of other unknowns, when applied to the natural hydrate, the mass transfer correlation predicted the dissolution rate within 20%. This seafloor-based experiment, along with visual observations of seafloor hydrate dissolution over a 3-day period, were used to further understand the fate of natural seafloor hydrates exposed on the seafloor. By showing that mass transfer is the rate-controlling mechanism for dissolution of these natural hydrate outcrops, proper hydrodynamic calculations can be employed to give a refined estimate on hydrate dissolution rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.