Abstract

Heparinoid, a sulfate polysaccharide derived from marine organisms was attracted largely attention due to its versatile activities. A naturally occurring heparinoid (M2) that was extracted from the mollusk Meretrix lusoria and used in this investigation shown strong antithrombotic action. UV–Vis, FT-IR, SAX-HPLC, and NMR were used to explore the structural characteristics of M2, results indicated that M2 similar with heparin, its average molecular weight was 22.58 kDa. Which was primarily made up of→4)-α-IdoA2S-(1→4)-α-GlcNS6S-(1→ (31.19%), →4)-β-GlcA-(1→4)-α-GlcNAc (1→ (23.21%), →4)-β-GlcA-(1→4)-α-GlcNS (1→ (13.87%), →4)-α-IdoA2S-(1→4)-α-GlcNS (1→ (8.95%), →4)-β-GlcA-(1→4)-α-GlcNAc6S (1→ (7.39%) and →4)-β-GlcA-(1→4)-α-GlcNS6S (1→ (7.63%). The antithrombotic activity of M2 was evaluated using measurements of the anticoagulant effect in vitro and the fibrinolytic capability in vitro and in vivo, and M2 has 122.4 U/mg of anticoagulant activity and 1.41 U/mg of fibrinolytic activity, respectively. Additionally, a mouse tail-cutting model was used to assess the bleeding effect in real time, it found that M2 had a reduced hemorrhagic risk than heparin. Consequently, M2 could be exploited to develop functional foods or medications with antithrombotic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call