Abstract

Bovine tuberculosis (BTB) is endemic to the African buffalo (Syncerus caffer) of Hluhluwe-iMfolozi Park (HiP) and Kruger National Park, South Africa. In HiP, the disease has been actively managed since 1999 through a test-and-cull procedure targeting BTB-positive buffalo. Prior studies in Kruger showed associations between microsatellite alleles, BTB and body condition. A sex chromosomal meiotic drive, a form of natural gene drive, was hypothesized to be ultimately responsible. These associations indicate high-frequency occurrence of two types of male-deleterious alleles (or multiple-allele haplotypes). One type negatively affects body condition and BTB resistance in both sexes. The other type has sexually antagonistic effects: negative in males but positive in females. Here, we investigate whether a similar gene drive system is present in HiP buffalo, using 17 autosomal microsatellites and microsatellite-derived Y-chromosomal haplotypes from 401 individuals, culled in 2002–2004. We show that the association between autosomal microsatellite alleles and BTB susceptibility detected in Kruger, is also present in HiP. Further, Y-haplotype frequency dynamics indicated that a sex chromosomal meiotic drive also occurred in HiP. BTB was associated with negative selection of male-deleterious alleles in HiP, unlike positive selection in Kruger. Birth sex ratios were female-biased. We attribute negative selection and female-biased sex ratios in HiP to the absence of a Y-chromosomal sex-ratio distorter. This distorter has been hypothesized to contribute to positive selection of male-deleterious alleles and male-biased birth sex ratios in Kruger. As previously shown in Kruger, microsatellite alleles were only associated with male-deleterious effects in individuals born after wet pre-birth years; a phenomenon attributed to epigenetic modification. We identified two additional allele types: male-specific deleterious and beneficial alleles, with no discernible effect on females. Finally, we discuss how our findings may be used for breeding disease-free buffalo and implementing BTB test-and-cull programs.

Highlights

  • Sexual diploid organisms are vulnerable to meiotic drivers

  • Characterized meiotic drivers are composed of a drive locus and a closely linked sensitive responder locus, which are not always protein-coding and which are usually embedded in large recombination-free genomic regions with numerous additional loci affecting meiotic distortion [2,3,4]

  • Significant differences were observed with respect to the individual microsatellite alleles

Read more

Summary

Introduction

Meiotic drivers are selfish genetic elements that violate Mendel’s law of equal segregation by favouring their own transmission, or that of the chromosome on which they reside. They do this by distorting meiosis, or by impairing the function or increasing the mortality of the opposite-sex gametes [1]. Sex-ratio distorters constitute a specific class of meiotic drivers that distort the primary sex ratio because they are located on one of the sex chromosomes They have been observed in insects (Drosophilidae, Diopsidae, Tephritida, Muscidae and Culicidae), and in mammals (Dicrostonyx torquatus, Myopus schisticolor and Akodon azarae) [3]. Relatively little is known about how gene drive systems interact with ecological and environmental factors in natural populations and how such interactions contribute to their long-term stability [1]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call