Abstract

The recently introduced family of natural evolution strategies (NES), a novel stochastic descent method employing the natural gradient, is providing a more principled alternative to the well-known covariance matrix adaptation evolution strategy (CMA-ES). Until now, NES could only be used for single-objective optimization. This paper extends the approach to the multi-objective case, by first deriving a (1+1) hillclimber version of NES which is then used as the core component of a multi-objective optimization algorithm. We empirically evaluate the approach on a battery of benchmark functions and find it to be competitive with the state-of-the-art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call