Abstract
Increased endoplasmic reticulum (ER) stress has emerged as a vital contributor to dysregulated glucose homeostasis, and impaired function of sarco-endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) is one of the central mechanisms underlying ER stress. In this study, we reported that SERCA2b upregulation contributed to the amelioration of ER stress and insulin resistance by a small natural compound jaceosidin. In a model of differentiated C2C12 myotubes, jaceosidin-triggered SERCA2b upregulation enhanced insulin sensitivity and decreased ER stress. Moreover, the activity of Ca2+-ATPase in thapsigargin-treated myotubes was also augmented by jaceosidin. Furthermore, jaceosidin significantly suppressed blood glucose levels, improved glucose tolerance and lowered body weight, but did not alter food intake in insulin-resistant obese mice. In addition, this compound markedly reduced lipid accumulation, suppressed the expression of lipogenic genes in liver and ameliorated liver injury. The ameliorative effects of jaceosidin were due to its ability to reduce ER stress via increasing the expression of SERCA2b in the muscles of obese mice. Taken together, jaceosidin could improve ER stress and attenuate insulin resistance via SERCA2b upregulation in mice skeletal muscles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.