Abstract

Insulin resistance (IR), as a common pathophysiological basis, is closely related to a variety of metabolic diseases, such as obesity and diabetes. IR is often accompanied by mitochondrial dysfunction which could be induced by a high fat diet. Punicalagin (PU), a natural compound extracted from pomegranate, could ameliorate palmitate-induced IR. However, the underlying mechanisms are not well known. We propose that understanding the proteomic response of mitochondria may help define the mechanisms of PU in the prevention of IR. Most of the mitochondrial proteins are encoded by nuclear genes and transported from cytoplasm. To distinguish newly incorporated proteins responding to stimuli from pre-existing mitochondrial proteome, nascent proteins in HepG2 cells were pulse labeled by an amino acid analog L-azidohomoalanine. Nascent nuclear encoded mitochondrial proteins were enriched by click reaction followed by mass detection. Our data showed that PU increased nuclear encoded protein incorporation to mitochondria in general though the total protein levels remained immobile. To decipher this phenomenon, we tested the protein and mRNA levels of genes related to mitophagy and mitochondrial biogenesis and found that the mitochondrial turnover was accelerated by PU treatment. By the nascent protein labeling strategy and pathway analysis, we enriched the newly incorporated proteins of mitochondria for responding to PU treatment and found that PU induced nascent protein incorporation into mitochondria and enhanced mitochondrial turnover. These findings demonstrate that PU prevents IR by targeting mitochondria, and thus, is an effective natural nutrient beneficial for mitochondrial turnover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.