Abstract
Due to computational advances in the past decades, so-called intelligent systems can learn from increasingly complex data, analyze situations, and support users in their decision-making to address them. However, in practice, the complexity of these intelligent systems renders the user hardly able to comprehend the inherent decision logic of the underlying machine learning model. As a result, the adoption of this technology, especially for high-stake scenarios, is hampered. In this context, explainable artificial intelligence offers numerous starting points for making the inherent logic explainable to people. While research manifests the necessity for incorporating explainable artificial intelligence into intelligent systems, there is still a lack of knowledge about how to socio-technically design these systems to address acceptance barriers among different user groups. In response, we have derived and evaluated a nascent design theory for explainable intelligent systems based on a structured literature review, two qualitative expert studies, a real-world use case application, and quantitative research. Our design theory includes design requirements, design principles, and design features covering the topics of global explainability, local explainability, personalized interface design, as well as psychological/emotional factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.