Abstract

Electrodynamic loudspeakers are the main actuators of the active noise control system, and their harmonic distortion has a detrimental effect on the noise reduction of the system. To improve the performance, this paper proposes a novel narrowband active noise control algorithm with compensating the nonlinearity of the loudspeaker. In the proposed algorithm, the parameters of the controller are obtained by iteration through the filtered-x least mean square algorithm. Meanwhile, they are adjusted in real-time by establishing the online inverse model of the loudspeaker using the Volterra expansion. The simulation experiments for the typical loudspeaker model show that the proposed algorithm can dramatically improve noise reduction compared to the conventional algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.