Abstract

High-fidelity visualization of anatomical organs is crucial for neurosurgical education, simulation, and planning. This becomes much more important for minimally invasive neurosurgical procedures. Realistic anatomical visualization can allow resident surgeons to learn visual cues and orient themselves with the complex 3-dimensional (3D) anatomy. Achieving full fidelity in 3D medical visualization is an active area of research; however, the prior reviews focus on the application area and lack the underlying technical principles. Accordingly, the present study attempts to bridge this gap by providing a narrative review of the techniques used for 3D visualization. We conducted a literature review on 3D medical visualization technology from 2018 to 2023 using the PubMed and Google Scholar search engines. The cross-referenced manuscripts were extensively studied to find literature that discusses technology relevant to 3D medical visualization. We also compiled and ran software applications that were accessible to us in order to better understand them. We present the underlying fundamental technology used in 3D medical visualization in the context of neurosurgical education, simulation, and planning. Further, we discuss and categorize a few important applications based on the 3D visualization techniques they use. The visualization of virtual human organs has not yet achieved a level of realism close to reality. This gap is largely due to the interdisciplinary nature of this research, population diversity, and validation complexities. With the advancements in computational resources and automation of 3D visualization pipelines, next-gen applications may offer enhanced medical 3D visualization fidelity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call