Abstract

A nano-structured Ni(II)–chelidamic acid (2,6-dicarboxy-4-hydroxypyridine) film was electrodeposited on a gold nanoparticle–cysteine–gold electrode. The morphology of Ni(II)–chelidamic acid gold nanoparticle self‐assembled electrode was investigated by scanning electron microscopy (SEM). Electrocatalytic oxidation of methanol on the surface of modified electrode was studied by cyclic voltammetry and chronoamperometry methods. The hydrodynamic amperometry at a rotating modified electrode at constant potential versus reference electrode was used for detection of methanol. Under optimized conditions the calibration plots are linear in the concentration range 0–50mM with a detection limit of 15μM. The formed matrix in our work possessed a 3D porous network structure with a large effective surface area, high catalytic activity and behaved like microelectrode ensembles. The modified electrode indicated reproducible behavior and a high level stability during the experiments, making it particularly suitable for analytical purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call