Abstract

A nanostructured aluminum oxide (NAO)-based fluorescence biosensing platform with a programmable sample delivery microfluidic interface is reported. The NAO-based fluorescence sensor can tremendously enhance the fluorescence signals, typically up to 100 × or more, over the glass substrate. The programmable sample delivery microfluidic interface, which is integrated with the NAO-based sensors, can automatically generate and deliver a series of different concentrations of the biological samples to each individual sensor. Hence it can facilitate the fluorescence-based biodetection and analysis for high throughput applications. Using Protein A and fluorophore-labeled Immunoglobulin G (IgG) as models, the binding between them on this platform have been demonstrated. It has been shown that the IgG of programmable concentrations can be delivered to individual sensor using the microfluidic interface and confirmed by the fluorescence images. Using current NAO-based fluorescence sensors without any optimization, the detectable concentration of IgG can be as low as 20pg/mm(2) using a conventional fluorescence microscope. Due to its inexpensive fabrication process, this technology could provide a disposable technical platform for fluorescence-based sensing and analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call