Abstract

Scanning force microscopy (SFM) was used to visualize the surface of hard elastic polypropylene (HEPP) film. The surface morphology of unstrained HEPP shows crystalline and noncrystalline rows oriented parallel to the extrusion direction. The crystalline rows are composed of lamellar blocks. The dimensions of crystalline and noncrystalline regions are determined. The structural surface changes induced by stepwise elongation of the film with a home-built stretching device are documented by SFM. Stretching of HEPP perpendicular to the extrusion direction causes cracks advancing through several crystalline rows. During elongation parallel to the extrusion direction the separation of adjacent lamellae by their translatory displacement occurs. Deformation-induced structural changes of HEPP on the nanometer scale are compared with proposed deformation models. Nanostructural changes are correlated with characteristic variations in the force-elongation curve. © 1996 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.